
A Dynamic Expansion Order Algorithm for the
SAT-based Minimization

Chia-Chun Lin, Kit Seng Tam, Chang-Cheng Ko, Hsin-Ping Yen, Sheng-Hsiu Wei,
Yung-Chih Chen, and Chun-Yao Wang, Member, IEEE

Abstract—Logic minimization attracted much attention in the
early days because it is the engine for logic synthesis and
optimization. Recently, a previous work proposed a SAT-based
minimization algorithm for the patch function in the Engineering
Change Order (ECO) problem. However, the algorithm is time-
consuming for the functions in high dimension Boolean space.
Therefore, in this paper, we propose an efficient algorithm that is
suitable for the functions in high dimension Boolean space.

Index Terms—Digital circuit, Logic optimization, SAT problem,
High dimension Boolean space.

I. INTRODUCTION

Logic optimization plays an important role in electronic
design automation (EDA). This is because it simplifies logic
circuits and leads a better Quality of Result (QoR) in terms
of area, delay, etc. Although logic optimization is an NP-hard
problem [11] [18], researchers have gained tremendous success
in both two-level [4] [9] [10] [12] and multi-level [2] [3] [5]
[14] [15] logic optimizations in practice.

Espresso [10] is a classic algorithm for two-level logic min-
imization. As compared with Quine-McCluskey minimization
algorithm [9], Espresso adopts several heuristics to avoid the
explosion issue of prime implicant as the number of inputs
increases. Espresso consists of the following steps. First, expand
each minterm to be a prime implicant. Second, remove the re-
dundant cubes that have been covered by other prime implicants
to get a prime cover. Third, reduce each prime implicant to a
smaller cube. Then, in the next iteration, expand the cubes again
in different directions. By applying these operations iteratively,
an optimized two-level netlist can be obtained.

In addition to Espresso, the work of [13] also proposed
a recursive SAT-based two-level minimization algorithm that
minimizes the number of cubes in the sum-of-product (SOP)
for computing patches in Engineering Change Order (ECO)
recently. However, when the input dimension of target function
grows to dozens to hundreds, the efficiencies of Espresso
and recursive SAT-based algorithm [13] decrease. In fact, the
efficiencies of these optimization algorithms can be improved
significantly if we skip the reduce operation. That is, expanding
each cube in a certain order until this cube becomes a prime
implicant. The minimization procedure is terminated when all

This work is supported in part by the Ministry of Science and Technology of
Taiwan under MOST 106-2221-E-007-111-MY3, MOST 108-2218-E-007-061,
MOST 109-2221-E-007-082-MY2, and MOST 109-2221-E-155-047-MY2.

C.-C. Lin, K. S. Tam, C.-C. Ko, H.-P. Yen, S.-H. Wei, and
C.-Y. Wang are with the Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C.
(email: chiachunlin@gapp.nthu.edu.tw; kitseng19960614@gmail.com;
jamesko1026@gmail.com; amypin.yen@gmail.com; shenxiu5651@gmail.com;
wcyao@cs.nthu.edu.tw). Y.-C. Chen is with the Department of Computer
Science and Engineering, Yuan Ze University, Taoyuan, Taiwan 32003, R.O.C.
(email: ycchen.cse@saturn.yzu.edu.tw).

Fig. 1. (a) A function to be minimized. (b) A prime obtained by expanding the
minterm 1111 with the expansion order a > d > c > b. (c) A prime obtained
by expanding the minterm 1111 when the expansion order starts from b.

the minterms in the on-set have been covered by the prime
implicants.

In this minimization procedure without the reduce operation,
the expansion order critically influences the QoR. For example,
given a Karnaugh map of an incompletely specified function
as shown in Fig. 1(a). This function has three minterms, 0100,
0010, and 1111, in the on-set, and three minterms, 1001, 0011,
and 1010, in the off-set. The other minterms are in the don’t
care-set. To obtain a minimized SOP form of the function,
the minimization procedure expands a minterm in the on-
set to a prime implicant iteratively. For an n-input function,
unfortunately, there are n! different orders to expand a minterm
in the on-set. For example, the prime implicant b in Fig. 1(b) can
be obtained by expanding the minterm 1111 with the expansion
order a > d > c > b. However, this minimization procedure
cannot reach a maximal prime implicant from the minterm 1111
when the expansion order starts from b, as shown in Fig. 1(c).
This is because minterns in the off-set block the opportunities
of impliciant acd for further optimization. Therefore, a good
expansion order in this procedure becomes quite important and
influences the size of resultant netlist significantly.

The problem formulation of this work is as follows: Given
a simulation model of a design, we would like synthesize a
minimized netlist that matches the behavior of the design. If
the number of inputs is not large, i.e., smaller than or equal to
25, we can enumerate its truth table, and the synthesized netlist
is exact from the viewpoint of functionality. However, if the
number of inputs is larger than 25, or we say the function is
in high dimension space, the truth table cannot be completely
enumerated in practice. In this situation, we randomly exercise
the simulation model to obtain the on-set and off-set patterns of

978-1-7281-8746-4/20/$31.00 ©2020 IEEE 271

20
20

 IE
EE

 3
3r

d
In

te
rn

at
io

na
l S

ys
te

m
-o

n-
Ch

ip
 C

on
fe

re
nc

e
(S

O
CC

) |
 9

78
-1

-7
28

1-
87

46
-4

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SO
CC

49
52

9.
20

20
.9

52
47

58

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 20,2021 at 00:09:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. (a) An AND gate and its corresponding CNF formula. (b) The truth
table of AND function.

the design. The remaining patterns that are not simulated will
be considered as don’t cares in the procedure. As a result, the
functionality of the synthesized circuit may be approximated
to the original design, where the accuracy of the synthesized
circuit is associated with the number of simulated patterns.

II. PRELIMINARIESA. Boolean satisfiability
Boolean satisfiability (SAT) problem is the problem of de-

termining if there exists an assignment that satisfies the given
Conjunctive Normal Form (CNF) formula. In 1990s, Marques-
Silva et al. [1] [7] [8] proposed a conflict-driven clause learning
algorithm, which can improve the performance of modern
SAT solvers [22] [23] [24]. Due to the rapid progress on the
performance of SAT solvers, many EDA problems can be solved
effectively and efficiently when they are modeled as a SAT
problem.

B. Tseitin transformation
Tseitin transformation algorithm [17] takes a combinational

circuit as input and generates a corresponding CNF formula.
Fig. 2(a) shows an AND gate and its corresponding CNF
formula. Fig. 2(b) lists the truth table of AND function. We can
see that only four assignments 000, 010, 100, and 111 satisfy
the CNF formula. In other words, the CNF formula is identical
to the function of AND gate. In fact, all the logic gates can be
expressed as their corresponding CNF formulae.

C. SAT-based two-level minimization
In the traditional ECO patch generation flow, the first step

is to find the on-set and the off-set of the patch function.
Next, the on-set and off-set will be transformed into the corre-
sponding CNF formulae, which are denoted as Con and Coff ,
respectively, by the Tseitin transformation algorithm. Then, the
resultant netlist of patch function can be synthesized by a SAT-
based two-level minimization procedure.

Similar to minimizing a given function represented by Kar-
naugh map, the SAT-based minimization procedure iteratively
expands the minterms in the on-set into prime implicants as
follows. First, deriving a satisfying assignment from Con using
SAT solvers. Obviously, this satisfying assignment represents a
minterm in the on-set of the patch function. The objective is to
expand the minterm into a larger prime implicant by assigning
some of the input bits as don’t care. However, the obtained
larger implicant cannot overlap the minterms in the off-set.
Hence, we need to test if Coff has a satisfying assignment
that is covered by the obtained implicant. When the result of
test is UNSAT, which means that the off-set of patch does not
overlap this larger implicant, this expansion is valid; otherwise,
invalid. Once a valid prime implicant is found successfully, it
will be removed from Con such that the succeeding iterations

will not repeatedly obtain an assignment that has been covered
by this prime implicant. When we cannot obtain a satisfying
assignment from Con anymore, an irredundant prime SOP is
derived.

The authors in [13] proposed a recursive algorithm to expand
the selected minterms for minimizing the number of prime
implicants in the synthesized netlist. The inputs of the recursive
algorithm is the CNF formula of off-set, Coff , and a set of
input variables obtained by the satisfying assignment from
Con. The algorithm will return the input variables that are
needed in the implicant. In other words, the input variables not
returned are don’t care variables after the algorithm. However,
the recursive algorithm is very time-consuming for functions
in high dimension space. Therefore, we propose an improved
approach focusing on the logic optimization in high dimension
space in this work. More details about this approach will be
presented in Section III.C.

III. LOGIC OPTIMIZATION FRAMEWORK

A. Handling multiple-output functions
The dimension of input space is a critical issue in this

problem. Once the number of inputs in the given function is
smaller than or equal to 25, this problem becomes easier from
the viewpoint of analysis accuracy. That is, the synthesized
circuit will not suffer from accuracy loss as we can completely
enumerate the truth table. Since the input of this work is a
simulation model, we do not have the netlist of function such
that we cannot structurally identify the transitive fanin cone
of each output for reducing the input dimension in a given
multiple-output function. Thus, we decompose a function into
many single-output functions by observing one output bit in the
simulated results at a time. Next, we use another method, which
will be explained in Section III.B, to identify the relevant inputs
with respect to an output.

B. Functional pruning
After simulating a set of random patterns for the single-output

function obtained from Section III.A, we may find that a set of
inputs I are not relevant to the output O. That is, the value
of O in this simulation model is intact when each input ∈ I
toggles under all simulated random patterns. Thus, we assume
that this set of inputs I are not within the fanin cone of output O,
which are called dummy inputs in this work, and we temporarily
remove them in the succeeding minimization procedure. Before
explaining how to identify the dummy inputs, we define the
Relevance Index (RI) of an input first.
Definition 1: Given an input pattern p of a single-output
function f , we define flip(p, xi) = 1 if the output of f changes
when an input xi in p changes; otherwise, flip(p, xi) = 0.
Definition 2: The Relevance Index of an input xi, denoted by
RI(xi), is defined as

RI(xi) =

k∑
j=1

flip(pj , xi)

k
(1)

where pj is the jth simulated pattern, and k is the total number
of simulated patterns.

For example, in Fig. 3(a), we can see that there are 8
simulated patterns. For this small example, the simulated pat-
terns are presented in a truth table. The output of f changes

272

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 20,2021 at 00:09:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The truth table of f = ab + ac (a) with the input order a > b > c.
(b) with the input order b > c > a.

Fig. 4. A base pattern and its corresponding bit-flip patterns for an n-input
function.

when the input c changes in two of these patterns. Therefore,
RI(c) = 2

8 = 0.25. On the other hand, the output of f changes
when the input a changes in six of the patterns, as shown in
Fig. 3(b). As a result, RI(a) = 6

8 = 0.75. According to the
results, we can see that the input a has a higher RI than the
input c in the function f = ab + ac. In fact, RI reveals the
behavior of inputs xi in a function. Once an input has a higher
RI , the change of this input is more likely to affect the output
value of a function.

Since it is intractable to enumerate the whole truth table
for evaluating RI in high dimension Boolean space, we adopt
an alternative approach, as shown in Fig. 4, to obtain the RI
of each input. First of all, we randomly select a base pattern
from the given n-input simulation model. To observe the RI of
each input, we generate a set of bit-flip patterns, which have
the hamming distance of one with respect to the base pattern.
Note that the user can determine the number of base patterns
according to the number of inputs in the function. For an input
xi with RI(xi) = 0, i.e., its change most likely cannot affect the
output value of a function, it is considered as a dummy input and
will be removed. In addition to these inputs with RI(xi) = 0,
we can also remove the inputs which have a small value of
RI when the number of inputs is very large. By adjusting the
number of removed inputs carefully, we can obtain a qualified
result within the CPU time limit.

C. Expansion order
After having the input patterns in the minimization proce-

dure, the next step is to minimize the circuit with respect to
this set of patterns. Basically, we can exploit the SAT-based
minimization procedure mentioned in Section II.C to obtain the
circuit. However, we found that it is quite difficult to obtain the
minimized SOP for the functions in high dimension space by the
work of [13]. Therefore, we propose a light-weight algorithm
to determine the input expansion order such that the reduce
operation or the recursive process in the minimization procedure

Fig. 5. (a) The truth table to be minimized under partial simulations. (b)∼(e)
The processes in determining the expansion order of the minimization proce-
dure.

can be skipped. Here we use a function in Fig. 5 as an example
to demonstrate the proposed algorithm.
Definition 3: The number of minterms in the on-set of the given
function f for which inputs xi = 1 and xi = 0 are denoted as
f(on, xi = 1) and f(on, xi = 0), respectively. Similarly, the
number of minterms in the off-set of the given function f for
which inputs xi = 1 and xi = 0 are denoted as f(off, xi = 1)
and f(off, xi = 0), respectively.

In fact, the expansion of a minterm means to include other
minterms in the on-set and then grow as a larger cube. As a
result, the idea behinds the proposed algorithm is to determine
an expansion order which can maximize the number of included
minterms in the on-set after the expansion. In this way, a
minterm in the on-set is less likely to be blocked by the
minterms in the off-set under the expansion order. Therefore,
in this algorithm, we calculate the number of minterms in the
on-set and off-set for which inputs xi = 1 and xi = 0 first.

Fig. 5(a) is the truth table of the function in Fig. 1(a). Both
on-set and off-set have three minterms after the simulation of
selected patterns. Fig. 5(b) lists the results of f(on, xi = 1),
f(on, xi = 0), f(off, xi = 1), and f(off, xi = 0) based on
Fig. 5(a). For example, the function has three minterms, 0010,
0100, and 1111, in the on-set. By Definition 3, we know that
f(on, a = 1) = 1 and f(on, a = 0) = 2 because there are 1
and 2 minterms in the on-set for which input a = 1 and a = 0,
respectively. Similarly, we can obtain f(off, a = 1) = 2 and
f(off, a = 0) = 1 as well, as shown in the second column of
Fig. 5(b).
Definition 4: Pull(on, xi) and Pull(off, xi) are defined as
follows:

Pull(on, xi) = f(on, xi = 1) + f(off, xi = 0) (2)

Pull(off, xi) = f(on, xi = 0) + f(off, xi = 1) (3)

We calculate Pull(on, xi) and Pull(off, xi) by EQ(2) and
EQ(3). For example, Pull(on, a) = f(on, a = 1)+f(off, a =
0) = 1+1 = 2, and Pull(off, a) = f(on, a = 0)+f(off, a =
1) = 2 + 2 = 4. The results of this example can be found

273

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 20,2021 at 00:09:35 UTC from IEEE Xplore. Restrictions apply.

in Fig. 5(c). The input variable xi with a larger Pull(on, xi)
means that the input variable is more likely to be 1 in the on-
set. Therefore, expanding this input variable to 1 is less likely to
overlap the minterms in the off-set as compared with the other
input variables. Similarly, the input variable xi with a larger
Pull(off, xi) means that the input variable is more likely to be
0 in the on-set. As a result, expanding this input variable to 1 is
more likely to overlap the minterms in the off-set as compared
with the other input variables.
Definition 5: Diff(xi) is defined as follows:

Diff(xi) = Pull(on, xi)− Pull(off, xi) (4)

We calculate Diff(xi) by EQ(4). Since Pull(on, xi) and
Pull(off, xi) represent the opposite information in the al-
gorithm, these two parameters can be merged into a single
parameter for further evaluation. Thus, we use EQ(4) to obtain
an order of these input variables. In summary, the input variable
xi with a larger Diff(on, xi) means that the input variable is
more likely to be 1 or less likely to be 0 in the on-set.
Definition 6: Priority(m,xi) is defined as follows:

Priority(m,xi) =

{−Diff(xi), if (xi = 1) in m

Diff(xi), if (xi = 0) in m
(5)

where m is a minterm to be expanded.
Now, we can determine the expansion order for a selected

minterm by sorting the priority(m,xi) in EQ(5) in a descend-
ing order. If the input variable xi of 1 in a cube is going to
be expanded, the expansion will include all the corresponding
minterms with xi of 0. Since an input variable xi with a larger
Diff(on, xi) means that the input variable is more likely to
be 1 in the on-set, including the minterms with xi of 0 would
not successfully grow as a larger cube with a high probability.
Therefore, the priority of this input variable needs to be adjusted
by applying a negation on Diff(xi). The results are shown in
Fig. 5(e).

For example, the priority values of input variables (a, b, c, d)
under the minterm 1111 are (2,−4, 0, 2). Therefore, the ex-
pansion order for minterm 1111 can be a > d > c > b or
d > a > c > b. Expanding this minterm in one of these two
orders can obtain the prime implicant as shown in Fig. 1(b).
On the contrary, expanding from the least priority value, which
starts from b, will result in a smaller prime implicant as shown
in Fig. 1(c). Similarly, expanding another minterm 0100 with
the computed expansion order c > a > d > b or c > d > a > b
can also obtain the largest prime implicant, which contains 8
minterms. In this example, by using the computed order for
expansion on the minterms, an optimized SOP can be obtained.

D. Fixing circuit
Since we do not simulate all the patterns from the simulation

model due to the large input space, the missed patterns are tem-
porarily considered as don’t care in the minimization procedure.
However, the missed patterns might not be don’t care patterns
actually. Thus, after obtaining the synthesized circuit, we can
fix the circuit if we have not reached the CPU time limit in
the minimization procedure. That is, we can simulate additional
patterns on both the synthesized circuit and the simulation
model for comparing and fixing the functional difference if
necessary.

Fig. 6. The overall structure of fixing circuit.

Specifically, we collect the patterns having the output of
1 in the synthesized circuit but having the output of 0 in
the simulation model, which form patch off , and connect
patch off and the synthesized circuit with an AND gate. This
circuit correction will remove the wrong minterms that should
have the output of 0 from the synthesized circuit. Similarly, we
collect the patterns having the output of 0 in the synthesized
circuit but having the output of 1 in the simulation model to
form patch on. We connect patch on and the modified circuit
we have obtained in the previous step with an OR gate. This
circuit correction will include the right minterms that should
have the output of 1 into the modified circuit. The overall
structure of fixing circuit is as shown in Fig. 6.

IV. APPLICATION AND EXPERIMENTAL RESULTS

In this section, we show the application in ECO flow of
the proposed algorithm and the corresponding experimental
results. We implemented the proposed algorithm in C++ lan-
guage. The experiments were conducted on a 2.6 GHz Linux
platform (CentOS 6.7). The benchmarks used in the experiments
are provided by the contributor of Problem A in the CAD
Contest@ICCAD 2019 and are available online [25]. These
benchmarks consist of IWLS 2005 benchmarks [26], OpenCore
[27], and some industrial designs. Note that we will apply
the existing optimization tool, ABC [21], to further optimize
the synthesized circuit in the end for exploiting logic sharing
among several output functions since the benchmarks have been
decomposed into many single-output functions

A. Application – ECO flow

The ECO problem is the task of incrementally updating an
implementation of the design when its specification has been
changed. The ECO flow consists of the following three steps.
First, identify the differences between the old circuit and the
new (golden) one. Second, select a set of internal wires as the
input of the patch function. Third, synthesize the patch function
with the selected internal wires. The proposed algorithm for
determining the expansion order can be seamlessly integrated
into the third step of the existing ECO optimization flow.

Most of time, the chip designers adopt the ECO flow due
to the tight chip release schedule. Therefore, an efficient opti-
mization algorithm is essential to the ECO flow. Besides, chips
only reserve a limited amount of spare cells for synthesizing an
ECO patch. Hence, designers hope that the size of synthesized
patch function can be as minimal as possible. In this experiment,
we compare our approach with the re-implemented recursive
algorithm [13], and demonstrate the efficiency and effectiveness
of the proposed expansion order algorithm in the minimization
procedure.

274

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 20,2021 at 00:09:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE COMPARISON OF CPU TIME AND CUBE COUNT BETWEEN THE RE-IMPLEMENTED WORK OF [13] AND THE PROPOSED ALGORITHM.

Re-implemented [13] Ours
|PI| |PO| Time (s) |SOP| Time (s) |SOP| Speedup |SOP| diff.

case 1 121 38 2.6 255 0.6 255 4.33 0
case 2 53 19 > 1 day - 1214.0 384479 - -
case 3 72 1 < 0.1 0 < 0.1 0 - -
case 4 56 5 67665.7 193 386.3 201 175.16 8
case 5 87 16 37422.3 698 96.7 710 386.99 12
case 6 76 1 14314.0 1023 22.7 1023 630.57 0
case 7 43 7 0.3 27 0.1 28 3.00 1
case 8 44 5 > 1 day - 81.0 1532 - -
case 9 173 16 23254.2 2134 239.2 2130 97.22 -4

case 10 37 2 58.1 128 1.2 128 48.42 0
case 11 60 20 > 1 day - 876.0 18910 - -
case 12 40 26 > 1 day - 72.6 13060 - -
case 13 43 7 0.3 16 0.1 17 3.00 1
case 14 50 22 > 1 day - 542.6 53410 - -
case 15 80 3 > 1 day - 8.3 1279 - -
case 16 26 4 1.0 78 0.1 78 10.00 0
case 17 76 33 9587.7 150 164.5 149 58.28 -1
case 18 102 2 > 1 day - 5853.3 261271 - -
case 19 73 8 1247.7 17 169.9 18 7.34 1
case 20 51 2 80629.3 384 357.6 384 225.47 0

Since the benchmarks have dozens of inputs, we cannot
simulate all the input patterns efficiently. Therefore, we con-
ducted functional pruning on these benchmarks. That is, we first
removed the inputs with small values of RI for the minimization
procedure. Then, we simulate the whole truth table for both
approaches.

TABLE I shows the experimental results of the first ap-
plication. Column 1 lists the benchmarks. Columns 2 and 3
list the numbers of primary inputs and primary outputs of
these benchmarks. Columns 4 and 5 show the CPU time and
the number of cubes in the resultant SOP form using the re-
implemented recursive algorithm [13]. Columns 6 and 7 show
the corresponding results by using our approach. Column 8
shows the speedup for our approach as compared to the re-
implemented [13]. The last column shows the difference of cube
count between two approaches.

For example, considering case 6 benchmark, the re-
implemented recursive algorithm [13] cost 14314 seconds (≈ 4
hours) to synthesize the patch function while our approach only
cost 22.7 seconds (0.5 minute). Furthermore, the cube count in
the synthesized SOP form for both approaches are the same,
1023.

According to the experimental results, we also observe that
the recursive algorithm cannot finish cases 2, 8, 11, 12, 14, 15,
and 18 (7 out of 20 or 35% benchmarks) in 86,400 seconds
while ours can. The average CPU time for all the benchmarks
in our approach is only around 500 seconds. For the benchmarks
that have results in the both approaches, the ratio of speedup of
the proposed expansion order algorithm with the minimization
procedure is up to 630. Furthermore, the number of cubes in
the resultant SOP of our algorithm is quite close to the work of
[13] for all the benchmarks with results. For case 9 benchmark,
the cube count of synthesized circuit is even lower by using our
approach. Note that the number of cubes in the resultant SOP
of case 3 is zero because the results of all the simulated patterns
are 1 in this case. In other words, the functionality of case 3 is
very close to a constant of 1. According to these experimental
results, we know that the proposed algorithm is very efficient

and can be well integrated with the ECO flow in high quality.

B. Influence of simulated patterns

For the designs in high dimensions, the number of simulated
patterns definitely influences the accuracy of the synthesized
circuit. However, we cannot conduct extraordinary amount of
simulations on the simulation model due to the CPU time
constraint. Thus, we need to utilize the simulation in a more
effective way for obtaining higher accuracies.

Here, we conduct another experiment to observe the rela-
tionship between the number of selected inputs and accuracy
under the same amount of simulated patterns, 220 = 1, 048, 576
patterns. In Section II.B, we have mentioned that we can
determine the number of selected inputs by the magnitude
of RI . The size of synthesized circuit is measured by two-
input gates. The accuracy is obtained by conducting simulation
of 100,000 random patterns on the synthesized circuit and
the simulation model at the same time. Note that one correct
matching means all output values of the synthesized circuit must
be the same as the output generated by the simulation model
under an input pattern.

TABLE II shows the experimental results of the second
experiment. Column 1 lists the benchmarks. Columns 2, 3,
and 4 show the accuracy, CPU time, and gate count of the
synthesized circuit with at most 20 selected inputs. Columns
5, 6, and 7 show the corresponding results with at most 21
selected inputs. Columns 8, 9, and 10 show the corresponding
results with at most 22 selected inputs. According to TABLE II,
we first observe that the accuracy is decreased when the number
of selected inputs increases for most of the benchmarks. This
is because the local input space is double when we increase
the number of selected inputs by 1. Second, we do not see
much difference in CPU time except for the benchmarks case
2 and case 14. Generally, the CPU time is proportional to the
number of simulated patterns in the minimization procedure.
In this experiment, we adopted 220 = 1048576 randomly
simulated patterns for all the different numbers of selected
inputs. However, these two benchmarks are special functions,

275

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 20,2021 at 00:09:35 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THE EXPERIMENTAL RESULTS FOR DIFFERENT NUMBERS OF SELECTED INPUTS UNDER THE SAME AMOUNT OF SIMULATION PATTERNS.

|Selected inputs| ≤ 20 |Selected inputs| ≤ 21 |Selected inputs| ≤ 22
Accuracy (%) Time (s) Gate count Accuracy (%) Time (s) Gate count Accuracy (%) Time (s) Gate count

case 1 100 7.5 170 100 7.9 170 100 6.6 170
case 2 87.79 1271.0 27227 18.08 3220.4 1417647 5.62 5805.8 2242515
case 3 100 1.2 0 100 4.6 0 100 9.8 0
case 4 99.48 123.8 110 99.21 92.1 4922 96.08 135.7 37736
case 5 99.26 25.8 137 99.24 25.7 137 99.23 25.9 137
case 6 99.97 76.0 43 98.16 82.6 17470 95.04 129.6 42053
case 7 100 1.8 40 100 1.9 40 100 2.0 40
case 8 99.98 46.3 36 98.96 39.1 10133 98.22 46.4 17234
case 9 69.22 2739.4 1317 65.03 2186.9 90180 58.76 2844.2 274136

case 10 100 7.2 24 100 6.3 24 100 6.5 24
case 11 99.39 723.3 205 92.47 663.9 74279 86.93 885.3 132817
case 12 99.72 226.0 192 89.18 299.3 97335 77.61 498.6 203499
case 13 100 1.7 27 100 2.1 27 100 2.3 27
case 14 41.67 1045.1 69158 21.41 2058.2 933135 7.69 4693.2 2032481
case 15 99.47 167.8 83 95.47 163.1 38280 90.74 229.1 78753
case 16 100 1.2 34 100 1.3 34 100 1.2 34
case 17 99.52 121.4 111 99.59 91.9 766 99.12 97.3 4291
case 18 54.03 424.2 61249 52.86 426.2 222380 52.2 686.6 318468
case 19 98.63 181.1 37 98.57 119.7 100 98.79 138.0 189
case 20 72.07 68.9 27 77.73 59.3 4095 77.93 96.6 13217

which act as a parity function by our examination. Since the
output of a parity function is 1 if and only if the input pattern
has an odd number of ones, we cannot find many adjacent
minterms in on-set for minimization. In other words, a minterm
in the on-set is easily to overlap the minterms in the off-set
when expanding. Since this situation occurs frequently when
the number of selected inputs was increased, the CPU time has
also increased. Finally, we also see a tremendous increase about
the number of gate counts for most of the benchmarks. This is
because the synthesized circuits become more complicated as
the number of selected inputs was increased.

In summary, we conclude that under the constraint of simu-
lating the same amount of patterns, determining an appropriate
amount of selected inputs first and then enumerating the truth
table for these selected inputs is a better approach to the
minimization problem in high dimension space. Note that since
the input dimension of each single-output function of cases 1,
3, 7, 10, 13, and 16 is less than 20, we can enumerate the
complete truth tables for these cases such that the accuracies
are all 100% under different numbers of selected inputs.

V. CONCLUSION

In this paper, we propose an optimization framework, which
consists of functional pruning, SAT-based minimization with
expansion order algorithm, and fixing network. According to
experimental results, the proposed expansion order algorithm
improved the bottleneck in the previous work and completed
the optimization flow for high dimension Boolean space.

REFERENCES

[1] R. J. Bayardo Jr and R. C. Schrag, “Using CSP look-back techniques to
solve real world SAT instances,” in Proc. AAAI, pp. 203-208, 1997.

[2] Y.-C. Chen and C.-Y. Wang, “Fast node merging with don’t cares using
logic implications,” IEEE Trans. on Computer-Aided Design, vol. 29, no.
11, pp. 1827-1832, Nov. 2010

[3] Y.-C. Chen and C.-Y. Wang, “Fast detection of node mergers using logic
implications,” in Proc. ICCAD, pp. 785-788, 2009.

[4] O. Coudert, J. Madre, and H. Fraisse, “A new viewpoint on two-level
logic minimization,” in Proc. DAC, pp. 625-630, June 1993.

[5] E. L. Lawler, “An approach to multilevel boolean minimization,” Journal
of the ACM, 1964.

[6] A. Mishchenko, R. K. Brayton, A. Petkovska, M. Soeken, L. Amaru, and
A. Domic, “Canonical computation without canonical representation,” in
Proc. DAC, pp. 1-6, 2018.

[7] J. P. Marques-Silva and K. A. Sakallah, “GRASP-A new search algorithm
for satisfiability,” in Proc. ICCAD, pp. 220-227, 1996.

[8] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A search algorithm
for propositional satisfiability,” IEEE Trans. on Computers, pp. 506-521,
1999.

[9] E. J. McCluskey, “Minimization of Boolean functions,” Bell Syst. tech J.,
vol. 35, no. 5, pp. 1417-1444, Nov. 1956.

[10] P. McGeer, J. Sanghavi, and R. K. Brayton, “Espresso-signature: A new
exact minimizer for logic functions,” IEEE Trans. on Very Large Scale
Integration Systems, pp. 618-624, 1993.

[11] C. D. Murray, and R. R. Williams, “On the (non) NP-hardness of
computing circuit complexity,” Theory of Computer, 2017.

[12] W. Quine, “The problem of simplifying truth functions,” American Math-
ematical Monthly, vol. 59, no. 8, pp. 521-531, 1952.

[13] D. A. Quoc, M. P.-H. Lin, N.-Z. Lee, L.-C. Chen, J.-H. R. Jiang, A.
Mishchenko, and R. K. Brayton, “Efficient computation of ECO patch
functions,” in Proc. DAC, pp. 1-6, 2018.

[14] H. Savoj, “Improvements in technology independent optimization of logic
circuits,” in Proc. IWLS, pp. 1-6, 1997.

[15] H. Savoj and R. K. Brayton, “The use of observability and external don’t-
care for the simplification of multi-level networks,” in Proc. DAC, pp.
291-301, 1990.

[16] K.-F. Tang, P.-K. Huang, C.-N. Chou, and C.-Y. Huang, “Multi-patch
generation for multi-error logic rectification by interpolation with cofactor
reduction,” in Proc. DATE, pp. 1567-1572, 2012.

[17] G. Tseitin, “On the complexity of derivation in propositional calculus,”
Studies in constructive mathematics and mathematical logic, vol. 2, no.
115-125, pp. 10–13, 1968.

[18] C. Umans, T. Villa, and A. L. Sangiovanni-Vincentelli, “Complexity of
two-level logic minimization,” IEEE Trans. on Computer-Aided Design,
pp. 1230-1246, 2006.

[19] B.-H. Wu, C.-J. Yang, C.-Y. Huang, and J.-H. R. Jiang, “A robust
functional ECO engine by SAT proof minimization and interpolation
techniques,” in Proc. ICCAD, pp. 729-734, 2010.

[20] H. Zhang and J.-H. R. Jiang, “Cost-aware patch generation for multi-
target function rectification of engineering change orders,” in Proc. DAC,
pp. 1-6, 2018.

[21] Berkeley Logic Synthesis and Verification Group, “ABC: a
system for sequential synthesis and verification,” Available:
https://people.eecs.berkeley.edu/∼alanmi/abc/.

[22] http://minisat.se/.
[23] https://www.labri.fr/perso/lsimon/glucose/.
[24] https://github.com/arminbiere/cadical.
[25] http://iccad-contest.org/2019/problems.html.
[26] http://iwls.org/iwls2005/benchmarks.html.
[27] http://opencores.org/.

276

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 20,2021 at 00:09:35 UTC from IEEE Xplore. Restrictions apply.

